2 research outputs found

    A regularization approach for reconstruction and visualization of 3-D data

    Get PDF
    Esta tesis trata sobre reconstrucci贸n de superficies a partir de im谩genes de rango utilizando algunas extensiones de la Regularizaci贸n de Tikhonov, que produce Splines aplicables a datos en n dimensiones. La idea central es que estos splines se pueden obtener mediante la teor铆a de regularizaci贸n, utilizando un equilibrio entre la suavidad y la fidelidad a los datos, por tanto, ser谩n aplicables tanto en la interpolaci贸n como en la aproximaci贸n de datos exactos o ruidosos. En esta tesis proponemos un enfoque variacional que incluye los datos e informaci贸n a priori acerca de la soluci贸n, dada en forma de funcionales. Solucionamos problemas de optimizaci贸n que resultan ser una extensi贸n de la teor铆a de Tikhonov, con el prop贸sito de incluir funcionales con propiedades locales y globales que pueden ser ajustadas mediante par谩metros de regularizaci贸n. El a priori es analizado en t茅rminos de las propiedades f铆sicas y geom茅tricas de los funcionales para luego ser agregados a la formulaci贸n variacional. Los resultados obtenidos se prueban con datos para reconstrucci贸n de superficies, mostrando notables propiedades de reproducci贸n y aproximaci贸n. En particular, utilizamos la reconstrucci贸n de superficies para ilustrar las aplicaciones pr谩cticas, pero nuestro enfoque tiene muchas m谩s aplicaciones. En el centro de nuestra propuesta esta la teor铆a general de problemas inversos y las aplicaciones de algunas ideas provenientes del an谩lisis funcional. Los splines que obtenemos son combinaciones lineales de las soluciones fundamentales de ciertos operadores en derivadas parciales, frecuentes en la teor铆a de la elasticidad y no se hace ninguna suposici贸n previa sobre el modelo estad铆stico de los datos de entrada, de manera que se pueden tomar en t茅rminos de una inferencia estad铆stica no param茅trica. Estos splines son implementables en una forma muy estable y se pueden aplicar en problemas de interpolaci贸n y suavizado. / Abstract: This thesis is about surface reconstruction from range images using some extensions of Tikhonov regularization that produces splines applicable on n-dimensional data. The central idea is that these splines can be obtained by regularization theory, using a trade-off between fidelity to data and smoothness properties; as a consequence, they are applicable both in interpolation and approximation of exact or noisy data. We propose a variational framework that includes data and a priori information about the solution, given in the form of functionals. We solve optimization problems which are extensions of Tikhonov theory, in order to include functionals with local and global features that can be tuned by regularization parameters. The a priori is thought in terms of geometric and physical properties of functionals and then added to the variational formulation. The results obtained are tested on data for surface reconstruction, showing remarkable reproducing and approximating properties. In this case we use surface reconstruction to illustrate practical applications; nevertheless, our approach has many other applications. In the core of our approach is the general theory of inverse problems and the application of some abstract ideas from functional analysis. The splines obtained are linear combinations of certain fundamental solutions of partial differential operators from elasticity theory and no prior assumption is made on a statistical model for the input data, so it can be thought in terms of nonparametric statistical inference. They are implementable in a very stable form and can be applied for both interpolation and smoothing problems.Doctorad

    Optimal shape parameter for meshless solution of the 2D Helmholtz equation

    No full text
    The solution of the Helmholtz equation is a fundamental step in frequency domain seismic imaging. This paper deals with a numerical study of solutions for 2D Helmholtz equation using a Gaussian radial basis function-generated finite difference scheme (RBFFD). We analyze the behavior of the local truncation error in approximating partial derivatives of the 2D Helmholtz equation solutions when the shape parameter of RBF varies. For discretization, we performed, by means of a classical numerical dispersion analysis with plane waves, a minimization of the error function to obtain local and adaptive near optimal shape parameters according to the local wavelength of the required solution. In particular, the method is applied to obtain a simple and accurate solver by using stencils which seven nodes on hexagonal regular grids, wich mitigate pollution-effects. We validated numerically that the stability and isotropy are enhanced with respect to Cartesian grids. Our method is tested with standard case studies and velocity models, showing similar or better accuracy than finite difference and finite element methods. This is an efficient way for interacting with inverse and imaging problems such as Full Wave Inversion
    corecore